
OGI Spoken Term Detection System

Zak Shafran Brian Roark Seeger Fisher
OGI School of Science & Engineering, Beaverton, OR 97006

{zak,roark,fishers}@cslu.ogi.edu

Acknowledgements: Dimitra Verygri & Andreas Stolcke, SRI

Dec 14, 2006



Key Features

I FSM-based implementation: flexible and quick prototyping

I Word-level tokens

I Two-stage search; allowing more complex models

I OOV & text-normalization

I Rescoring paradigm

I Query expansion



Transducer Index

1. Input: ASR word lattices from SRI

2. First, we compute forward-backward algorithm to convert the
likelihood scores into posteriors

3. Since acoustic scores have large dynamic range, likelihoods are
squashed by dividing it with language model factor before
computing posteriors, a practice fairly common in ASR

4. Resulting lattices are pruned to eliminate paths with low scores

5. Finally, word posterior lattices are converted into transducer
index



Transducer Index

I Input: All n-gram sequences present in ASR lattices

I Output: Utterance IDs associated with each n-gram sequence

I Cost: Posterior probability of the sequence in the utterance

Steps to Create Transducer Index

1. ASR lattice of each utterance is turned into an n-gram FSM
(Allauzen et al 2004)

2. 5-word query length restriction is applied by composing the
n-gram FSM with a constraint automaton

3. Output labels of final transitions are tagged with utterance ID

4. Optimization by applying weighted ε-removal, weighted
determinization and minimization over the log semiring, after
encoding the transducer as an equivalent acceptor

5. Transducer index, I, is created by the union of all
utterance-level transducers



Baseline Search

1. Create a query FSM, q

2. Compose query FSM with FST index, q ◦ I
3. Pick top 1000 hits, namely, fsmbestpath -n 1000

4. For each utterance, return the times of best occurrence

Other Variants
Transducer index can be converted into phone-based index and
search can easily be performe at phone level

1. Expand the query into its pronunciation, qL
2. Compose query FSM with phone-level FST index, qL ◦ L ◦ I

. . .



Baseline Results

ATWV

Test set Total BN CTS MTG
2006 Dev 0.769 0.833 0.673 0.256
2006 Dry 0.678 0.777 0.598 0.196

Performance: BN � CTS � MTG Results on Dev � Dry

Types of Errors?

1. How much can BN / CTS / MTG benefit from fixing false
alarms?

2. How much can BN / CTS / MTG benefit from fixing misses?



Oracle Experiment

1. Perform an exhaustive search and score the result

2. Using the alignment (csv) and judgements (corr/fa) remove
false alarms to create an oracle result

3. Score the oracle result



Oracle Score

ATWV

Test Total BN CTS MTG
Dev 0.827 (0.769) 0.874 (0.833) 0.813 (0.673) 0.617 (0.256)
Dry 0.757 (0.678) 0.834 (0.777) 0.759 (0.598) 0.572 (0.196)

Observations

I Eliminating false alarms improves CTS & MTG significantly!
I Adopt a rescoring paradigm to reduce false alarms

I Misses accounts for the gap from unity. MTG particularly
suffers from it!

I OOV & Text-normalization to recover misses



Rescoring Paradigm

I Key idea: reduce false alarms

I SVM-based rescoring (libsvm)
I Features:

1. Number of words
2. Number of phones
3. Type of utterance (BN/CTS/MTG)
4. n-gram posterior
5. Density of lattice: #states, #arcs
6. Frequent vs infrequent word

I Train of dev, test on dry and vice versa



Rescoring Results

ATWV

Test Total BN CTS MTG
Dev 0.680 0.779 0.598 0.189
Dry 0.769 0.834 0.673 0.262

Conclusions

1. Training and testing (cheating experiments) on Dev & Dry
show substantial improvements

2. However, only marginal generalization across sets, possibly,
due to bad features or small size of the held-out set

3. Additional held-out data set was created using the NIST
scripts, but its composition differed from the NIST set and did
not help

4. So, in the end, Dev and Dry data was pooled to train the
rescoring algorithm and was used in the evaluation



OOV & Text-normalization

I Non-standard spelling in query can be problematic
I e.g., ‘Hanson’ versus ‘Hanssen’ (NIST 2006 STD Dev)

I ASR transcripts may contain orthographic variants of differing
frequency

I ‘Mr.’ versus ‘Mr’ (NIST 2006 STD Dev)

I Queries with true OOVs maybe recovered by mapping them to
similar sounding words from ASR vocabulary

I ‘billionaire’ versus ’billion air’

I A single approach was developed to handle the above
problems



OOV & Text-normalization (contd.)

I Build a word transducer L
I Estimate the expected unigram word frequency G in the

indexed ASR lattices

I Compose the two, L ◦ G to provide weighted transducer LG
I At test time, expand each query word to its pronunciation,

qL, which is then composed with LG, qL ◦ LG, and projected
onto outputs

I If non-empty, word is replaced with highest scoring output
I Unless pronunciation has less than 4 phones

I To handle pronunciations of unseen words, Festival was used



Results OOV & Text-normalization

ATWV

Test Total BN CTS MTG
Dev 0.777 (0.769) 0.843 (0.833) 0.674 (0.673) 0.264 (0.256)
Dry 0.692 (0.678) 0.795 (0.777) 0.594 (0.598) 0.143 (0.196)

Small consistent improvements



In the works, but didn’t make it

1. System combination with SRI

2. Phone-based and mixed-token system

3. Query expansion

4. Learned OOV & text-normalization



Query Expansion

I boost scores for Vatican when it co-occurs with Rome

I for each query, look up Gigaword corpus and come up with a
candidate set of “good” co-occurring words

I test the present of these telltale words in the retrieved
utterance

I new scores computed using the same rescoring paradigm
mentioned earlier


